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Stress transfer in the fibre fragmentation test 
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The micromechanics of stress transfer has been analysed in a multiple-fibre composite 
which was subjected to uniaxial tension. The model composite was treated as a three- 
cylinder assemblage, which consisted of a central fibre, a matrix annulus and a composite 
medium. Analytical solutions have been derived for all major stress components for the 
composite with fully bonded fibre-matrix interface. A parametric study was performed on 
a carbon fibre-epoxy matrix composite. The result suggests that the principal effect of a stiff 
composite medium surrounding a discontinuous isolated fibre due to the high fibre volume 
fraction and stiff matrix, is to reduce the efficiency of stress transfer over the central potion of 
the fibre, while promoting the f ibre-matr ix  interface shear stress concentration at the fibre 
end region. Practical implications of this observation with respect to fibre fragmentation and 
interracial debonding are discussed. 

1. Introduction 
The fibre fragmentation test [1] has now become one 
of the most important microc0mposite test methods 
developed as a means of evaluating the bond quality 
at the fibre-matrix interface [2]. A critical review [3] 
has recently been presented of theoretical aspects of 
this test method with a particular emphasis on the 
statistical nature of the fibre fragmentation process 
and the interface debonding phenomenon. Because 
the stress fields and the damage process arising in this 
test closely resemble those of many composite compo- 
nents in service conditions, a fundamental under- 
standing of this knowledge is essential to the design of 
practical fibre composites of load-bearing nature [4]. 
Since the advent of the shear lag model [-5], this 
loading geometry has been most widely used for the- 
oretical analyses of fibre composites in order to under- 
stand the efficiency of the stress transfer across the 
interface. 

From both the stress transfer and fracture mechan- 
ics viewpoints, an improved micromechanics model of 
the single-fibre fragmentation test was presented in 
Part I of this paper [63. Interfacial debonding was 
analysed based on the sheaf  strength criterion in 
which the debond crack propagates when the max- 
imum interfacial shear stress at the fibre ends reaches 
the shear strength of the interface. It was assumed that 
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the fibre breaks when the maximum fibre axial stress 
taking place at the fibre centre exceeds the average 
tensile strength based on Weibull statistics. Depend- 
ing on the interface properties and the fibre tensile 
strength for given elastic constants of the composite 
constituents, three distinct conditions for the interface 
can be identified, namely full bonding, partial debon- 
ding and full frictional bonding. The specific criteria 
necessary to satisfy each interface condition were also 
properly quantified. In a parametric study employing 
a model composite of carbon fibre-epoxy matrix, 
a characteristic applied stress can be identified, below 
which no debonding takes place. With increasing ap- 
plied stress from this value the debond length in- 
creases towards a plateau value. The mean fibre frag- 
mentation length can be predicted, which is the sum of 
the debond and bond lengths. 

As a continuation of the previous study, the theoret- 
ical analysis of the fibre fragmentation test geometry 
was further extended for composites containing fibres 
of high volume fraction. A particular emphasis was 
placed on examining the effects of the interactions 
between neighbouring fibres and the fibre volume 
fraction on the stress transfer in a single broken fibre 
segment. For this purpose, the multiple fibre com- 
posite was treated as a three-cylinder model which 
consisted of three coaxially located components, 
namely a circular fibre, a matrix annulus and a com- 
posite medium. The first two are the elements of the 
single-fibre composite, while the composite medium 
represents a homogeneous trans-isotropic assemblage 
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of fibres and matrix material with its fibre volume 
fraction being identical to the core single-fibre com- 
posite. The three-cylinder composite model has been 
successfully applied to the analysis of fibre pull-out 
test on composites with and without an interracial 
coating [-7-9]. 

2. Theoretical analysis 
2.1. Basic governing condit ions 
The three-cylinder composite model shown in Fig. 1 
contains a single discontinuous fibre of length 2L 
embedded at the centre of a coaxial cylindrical shell of 
matrix which, in turn, is surrounded by a trans- 
isotropic composite medium. The radii of the elements 
are a, b and B, respectively. The tensile stress in the 
composite medium at z = + L, c~ = (YaB2/(B 2 - b2), 
is caused by the external stress, %, applied to the 
composite medium at its remote ends. The external 
stress is transferred to the matrix across the 
matrix-composite interface which, in turn, is transfer- 
red to the fibre across the fibre-matrix interface. 

A set of cylindrical coordinates (r, 0, z) is selected 
for the analysis such that the z-axis corresponds to the 
axis of the fibre. The mode of deformation is assumed 
symmetric about the fibre axis as well as about the 
plane perpendicular to the centre of the fibre at z = 0. 
Therefore, the stress components ( ~ ,  cr~ ~ ,  ~t~) and 
the displacement components (u r, u ~) are all indepen- 
dent of the tangential coordinate, 0. The remaining 
stress and displacement components are zero. Follow- 
ing the previous analysis [,6-1, it is assumed that the 
cross-section of the fibre ends is separated from the 
composite so that no stress is transferred through the 
fibre ends (i.e. cr~ = 0 at z = + L). Fully bonded inter- 
face is considered for the whole fibre length in the 
present paper. 

2.2. Solutions for the stress components 
For the cylindrical coordinate of the three-cylinder 
composite, the basic governing equations and the 
mechanical equilibrium conditions are basically sim- 
ilar to those employed for the single-fibre composite 
[-6]. For perfectly elastic and isotropic fibre and 
matrix, and elastic trans-isotropic composite medium, 
the axial stresses, cyf(z), cvZ(r, z) and ~(z ) ,  and the 
shear stresses, ~m(r, z) and %(r, z), are related to the 
displacements by 

Ou~(z) 1 r 0 
{CY~(Z) -- vf[-cYf(r), z -? cYf(r, z)]} (1) 

~z - Ee 

e u Z ( z ) _  1 {( z ( z  ) , V m [  rm(r ' z )  -1- Gem(r, z ) ]  }(2) 
~Z E m 

~u~(z) ] {~(z)-vo[ ,~o(r ,z)+~o(r ,~)]}  (3) 
~z E~ 

~u~(r,z) 2(1 At- Vm) 

~r E m 

Ou~(r, z) 2(1 + v~) 

~r Eo 

~m(r, z) (4) 

- -  ~o(r, z)  (5) 

"l 

-L z=O L 

Figure 1 A schematic drawing of a three-cylinder composite in the 
fibre fragmentation model. 

where the subscripts f, m and c refer to fibre, matrix 
and composite, respectively while the superscripts are 
coordinate directions. E and v are Young's modulus 
and Poisson's ratio, respectively. For a thin fibre, the 
axial displacement is assumed independent of the 
radial position. The stress components in the radial 
and circumferential directions are small compared to 
the axial stress components, and thus are neglected in 
Equations 1-3. For the shear strains in the matrix and 
composite medium in Equations 4 and 5, the radial 
displacement gradient with respect to the axial direc- 
tion is neglected as compared to the axial displace- 
ment gradient with respect to the radial direction. For 
the trans-isotropic composite medium, E~ and vc in 
Equations 3 and 5 can be approximated, based on the 
simple rule of mixtures in the axial direction 

Eo = Ef Vf + Era(1 -- gf) (6a) 

V c = vfVf  -}- Vm(1 -- gf )  (6b) 

where Vf = (a/b) 2 is the volume fraction of fibre in the 
core single-fibre composite, which is identical to that 
in the composite medium. The simple rule of mixtures 
given in Equation (6a and b) is only valid provided the 
aspect ratio of the fibre, L/a, is maintained sufficiently 
large so that the Young's modulus of the composite 
medium, E~, is little affected by the instantaneous fibre 
length. The mechanical equilibrium between the ten- 
sile stress, cy, and the internal stress distributions in the 
composite constituents requires that 

BZcr=a2cs~(z) + 2 f f  rcsZ(r,z)dr + 2 f f  r~:(r,z)dr 

(7) 

The external stress applied to the composite medium 
is transferred to the matrix through the matrix-com- 
posite interfacial shear stress, ~i(b, z), which in turn, is 
transferred to the fibre through the fibre-matrix inter- 
facial shear stress, zi(a, z), such that 

dcy~(z) 2 
~e(a, z) (s) 

dz a 

d [ f f  rcy•(r,z)l a'q(a,z) + b'q(b,z) (9) dz 

Shear stresses in the matrix, "Cm(r, z), and in the com- 
posite medium, ~o(r, z), have the Lam6 form [10] 

P2 "c(r, z) = Plr + - -  (10) 
r 

where Pa and P2 are functions of z. For the boundary 
conditions at the interfaces between the composite 
constituents, i.e. 7:m(a , z) = "q(a, z) at r = a, 

3025 



-cm(b , z )  = %(b, z) = ~i(b, z) at r = b, %(c, z) = 0 at 
r = c, the shear stresses ~m(a, z) and zo(b, z) are given 
as a function of the interface shear stresses, q(a, z) and 
1:i(b , Z) 

t [b'ci(b, z) - a'ci(a , z) ]r 1, 
"cUr, z) = 7 

ab[b'cr(b, z) - a'ci(a, z) ]'~ 
+ - -  (11) 

r 

B z _ r 2 
%(r, z) = ~'1 ~ "ci(b, z) (t2) 

where the volume ratios between the composite con- 
stituents are 7 = a l l (  be - a 2 )  and 71 = b2/(  B2 - b2) . 
For the matrix annulus (a ~< r ~< b), combination of 
Equations 2, 4 and 11 for the axial displacement 
continuity at the fibre-matrix interface (i.e. 
u~(a, z) = u~(z)) and integration gives 

l (b~  __ r'] E m [ U m ( b , z )  ~ Uf(z)]  
~=(r, z) = ~ ,} 2(1 + v=) 

LkS2/2 r 

- ( ~ - r)  ]zi(b, z) (13) 

Em[um(b, z) -- Uf(Z)] 
�9 ~(a, z) - 2aysz(1 + vm) 

where the non-dimensional coefficients sl and s2 are 
given in Appendix 1. The matrix axial stress can be 
derived based on the relations between the stress com- 
ponents and the axial displacements given in Equa- 

eye(r, z) = c~(b, z) 

I B21n (r/b ) - (r2 - b2) ] [ ey=~( B' z) - ey :(b' z ) 
+ 

bZs5 
(18) 

where eye(b, z ) ( =  c~Zm(b, z)/%) and c~Z(B, z) are the 
composite axial stresses at the interfaces, r = a and 
r=b, respectively, oq(=Em/E~) is the Young's 
modulus ratio of the matrix to the composite. Having 
determined the stress components in the matrix and 
the composite medium, combination of Equations 14, 
15, 17 and 18 with the mechanical equilibrium Equa- 
tion 7 yields 

-- aZylSzSs(1  + r e )  dZcY~(z) ~ ( B ,  z) = 
S 1 d z  z 

-f ~ylss(1 + vo) z 
"~sl(1 + Vm) ~f(Z) 

y S l ( 1  -}- Vm) - -  ~ I T I S 5 ( 1  -}- Vc) 
~, (b ,  z) 

~1"~$1(1 -[- Vm) 

cY:(b'z)=~aZ/F~+(!)2T4]}( /LSl 

q d ~ ( z )  

- 1 + - -  + cW(z) 
$1 

(19) 

(20) 

eye(r, z) = eye(a, z) + [b21n(r/a) 
  2ae'l[ozlb 

a2s2 

z) - ~Z(a, ~)1 

a 2 dz 72 b 2 In (r/a) 
(r ~ -- a=)] 5- } (15) 

tions 1, 2, 4 and 13. 
where cy~,(a, z)(= acre(z)) and eye(b, z) are the matrix 
axial stresses at the interfaces r = a and r = b, respec- 
tively. ~(= Em/Ef) is the Young's modulus ratio of the 
matrix to the fibre. 

Similarly, the stress components can be derived for 
the composite medium (b ~ r ~< B). Combining Equa- 
tions 3, 5 and 12 for the axial displacement continuity 
at the matrix-composite interface (i.e. u~(b,z) 
= u~(b, z) at r = b) and integration gives 

%(r,z)=Ec[uc(B'z)-uc(b'z)] (B~ ) 
2b2ss(1 + vc) - r (16) 

E~[u~(c, z) - u~(b, z)] 
�9 i(b, z) = (17) 

2b71ss(1 + vo) 

where the non-dimensional coefficients ss, are given in 
Appendix 1. Therefore, the composite axial stress is 
derived from Equations 3, 5, 12 and 17 

where the non-dimensional coefficients s3, Tt, T2, T3 
and T4 are given in Appendix 1. Combining Equa- 
tions 8, 9, 19 and 20 yields a fourth order differential 
equation for the fibre axial stress as 

a~dr d Z ( Y f ( z )  z 
d z  4 + a2Q1 dz ~ + Q a ( y f ( z )  - QzQ3(y = o 

(21) 

where the coefficients Q1, Q2 and Q3 are given in 
Appendix 1. The general solution of c~(z) in Equation 
21 has the form 

~ ( z )  = Q3cy + Riexp(]33z) + Rzexp( -  [~3z) (22) 

where the coefficient ]33 is a function of the elastic 
properties and the geometric factors of the composite 
constituents and is given by 

1 
[ 32 = ~aSa 2 [ -  Q1 + (Q~ - 4Q211/2] (23) 
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R~ and R2 in Equation 22 are determined for the 
boundary condition of an unbonded cross-section at 
both ends of the fibre, i.e. (~(z) = 0 at z = _4- L. Thus 

- -  Q 3 ( y  
R1 = R2 - (24) 

2cosh([~3L) 

Therefore, the solutions for the axial stresses, cry(z), 
a~(r, z) and o~(r, z) in the composite constituents, 
which are normalized with the remotely applied stress, 
c&, are given as 

I cosh(133z) ] 
cyf(z)cr. - (1 +'y1)Q3 1 cosh(133L)J (25) 

tion criterion is obtained in terms of the external stress 
applied at remote ends, C~a = CYaf 

Ch-s cosh(133L) 
~ f  - (32) 

(1 + 71)Q3 cosh([33L) - 1 

By rearranging Equation 32, the mean fibre fragment 
length is obtained as a function of the external stress, 
chf, and fibre tensile strength, c~Ts(2L) 

2L = ~33 c ~  (1 Jr- ~/1)~3(Yaf --  (YTs(2L)J 

(33) 

z = (1 § Y1)(Q6 - o~Q3) bZln (Ym(r, Z) ~(1 + ~/1)Q3 + -- ~Q3 
~a a2s2 2 cosh(133L) 

+ Q5 + otQ3 - a27si( 1 + Vm)133Q3Qr b21n +7(1 + Vm)I~2Q3Q4 a21n(r/a) (26) 
aZ s2 2 

06, I ~a ~1 al cosh([33L) + (1 + ?t)  ysl(1 + Vm) + a271(1 + vc)[3~ Q3 

- ] w(1 + vo)( Q3 + Qs) [-cosh(133z)]'  ln(r/b) (27) 
ySl(1 + Vm) lcosh([~3Z)JJ -2-b ~ J 

where the coefficients Q4, Q5 and Q6 are given in 
Appendix 1. Similarly, the solutions for the interface 
shear stresses, normalized with the remotely applied 
stress, or,, are also obtained as 

~i(a, z) a(1 + 71)[33Q3 sinh(133z) 
~, 2 cosh([33L) 

(28) 

zi(b, z) - -  a2(1 + ?t)[33Q3Q4 sinh([33z) 
- ( 2 9 )  

(~a 2b cosh (~3L) 

By replacing "ci(a , z) and "ci(b , z) in Equations 11 and 
12 by the solutions obtained in Equations 28 and 29, 
the shear stresses in the matrix and the composite 
medium can directly be calculated. 

2.3. Fibre fragmentation criterion 
The embedded fibre fractures when the stress applied 
to the composite at its remote ends is high enough to 
cause the maximum fibre axial stress to reach the local 
fibre tensile strength. Following Part I of this paper, 
(see also Appendix 2) an average strength theory based 
on the Weibull probability of failure [11] is employed 
here as the criterion of fibre fragmentation. Because 
the fibre axial stress is maximum at the fibre centre, 
z = 0, the fibre fractures if 

z / L \  tIm 
cYf(z)l,:o = C~,s(2L)= CYTs(2Lg) ~ g )  (30) 

where (ITs(2Le) is the average strength of the fibre 
corresponding to a gauge length 2Lg and is given by 

( ' )  (YTs(2Lg) = [c~,(2Le)]- 1/mF 1 + m (31) 

Therefore, by substituting Equation 30 into the fibre 
axial stress given by Equation 25, the fibre fragmenta- 

The fibre fragmentation criterion represented by 
Equation 32 is only valid when the interface is fully 
bonded. This means that the maximum fibre-matrix 
interface shear stress obtained at the fibre ends, 
z = + L, in Equation 28 must always be smaller than 
the interface shear bond strength, %. Therefore, the 
condition for full bonding is expressed as a function of 
the materials properties, CyTs(2L) and %, from Equa- 
tions 28 and 32 

aJ33 sinh ([33 L) 
Zb > C~Ts(2L) (34) 

2 cosh([33L)-- 1 

2.4. Interface debond criterion 
Based on the shear strength criterion, a debond crack 
initiates when the maximum interface shear stress 
reaches the shear bond strength, %. Because the max- 
imum interface shear stress occurs at the fibre ends, 
the interface debond criterion is obtained from Equa- 
tion 28 in terms of applied stress at remote ends, 
(Ya : (Jad 

2% 
craa = coth ([33L) (35) 

a(1 + Y1)[33Q3 

3. Results 
Specific results are calculated to show the stress distri- 
butions as well as the characteristic fibre fragmenta- 
tion and interface debond phenomena based on the 
solutions obtained in the preceding section for 
a model composite of carbon fibre-epoxy matrix [12]. 
Table 1 gives the mechanical properties of the com- 
posite constituents and the Weibull statistics of tensile 
strength of the fibre used in the present study. Unless 
otherwise specified, radii a = 0.003 mm and 
B = 1.0 mm for the fibre and the composite medium, 
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T A B  LE  I Mechanical/interface properties of carbon fibre-epoxy 
matrix composites and the Weibull parameters of fibre tensile 
strength. 

Mechanical Interface Weibull parameters 
properties for fibre tensile 

strength 

% = 72.7 M P a  2Lg = 12 mm 
~Ts(2Lg) = 2.35 GPa  
m =3 .8  
o" u = 5.0 

Ef = 230 GPa  
E m = 3 . 0  G P a  

vr = 0.2 
Vm = 0.4 

respectively, and fibre length 2L = 2.0 mm are used in 
the present calculation to show the essential trends. 
Examples of distributions of the axial and shear stres- 
ses are given along the fibre axis. 
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3.1. Stress d i s t r i bu t i ons  in the c o m p o s i t e  ~ 0.25 
cons t i t uen ts  ~, 

The general distributions of the fibre axial stress (FAS) ~ 0.2 
and the fibre matrix interface shear stresses (ISS) 
shown in Fig. 2 arc very similar to those obtained ~ 0.15 
from a single-fibre composite model. The FAS is max- .- 
imum at the mid-length, and decreases towards zero at ~ 0.1 
the fibre ends. It is interesting to note that an increase =-~ 
in fibre volume fraction, Vf, results in the central 0.05 
portion of the fibre with a constant plateau value z 

becoming relatively longer while the stress gradient 0 
near the fibre ends being more drastic within a short 0 
distance (Fig. 2a). Therefore, the corresponding (b) 
fibre-matrix interface shear stress (ISS) and the stress 
gradient gradually increase with a larger portion of 
the fibre central region being free of ISS (Fig. 2b). It is 1.4 
also noted that the matrix-composite interface shear ~ 1.2 
stress (ISS) and the stress gradient decrease with in- 
creasing fibre Vf (Fig. 2c). When the fibre Vf is greater ~ 1 

e- 

t h a n  about 0.3, the maximum ISS value for the m 0.8 
matrix-composite interface obtained at the fibre ends m o 
tends to become negative. ~ 0.6 

e- 

The shear stresses, both at the matrix and the corn- .- 
posite medium, increase exponentially with distance ._~ 0.4 
away from the fibre centre, as shown in Fig. 3. Also ~ 0.2 

L. superimposed in these plots is the shear stress at the o 
matrix-composite medium interface, "ci(b , z), to show z 0 
clearly the variation of the shear stresses in the radial -0.2 
direction across the interface. In contrast to the sim- 0 
ilar functional variation with respect to the axial dis- (c) 
tance, these shear stresses display reversed responses 
with respect to the radial distance. At a given axial 
position, the matrix shear stress increases gradually 
towards the matrix-composite medium interface 
(Fig. 3a), whereas the shear stress in the composite 
medium decreases dramatically towards the outer- 
most surface of the composite cylinder. This is a direct 
reflection of the boundary conditions employed in the 
theoretical analysis. 

The predominant effect of fibre volume fraction 
Vf, on the stress distributions is summarized in 
Fig. 4 where the characteristic maximum FAS and 
ISS values, obtained in the mid-fibre and fibre ends, 
respectively, are plotted as a function of fibre Vf. 

i i i i i 
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Figure 2 Distribution of (a) normalized fibre axial stress, a~/c&, (b) 
normalized fibre-matrix interface shear stress, q(a,z)/aa, and (c) 
normalized matr ix-composi te  interface shear stress, q(b,z)/cra, 
along the fibre axis, z/a, for fibre volume fractions Vr = 0.005, 0.01, 
0.1 and 0.3. 

A completely reversed fibre Vf dependence is manifes- 
ted between the FAS and the ISS (Fig. 4a and 4b). The 
maximum FAS decreases, whereas the maximum 
fibre-matrix ISS increases almost parabolically with 
increasing Vf. The principal effect of matrix Young's 
m o d u l u s ,  Em,  is seen to attenuate the effect of fibre 
volume fraction on these stress fields. In particular, the 
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F i g u r e  3 Distribution of (a) normalized shear stress, ' rm( r  , Z)/(Y~, in 
the matrix for r = a + (b - a ) / 4 ,  a + (b - a ) / 2 ,  a + 3(b - a ) / 4  and 
(b) normalized shear stress, ~ ( r ,  z ) / c y , ,  in the composite medium for 
r = b, b + ( B  - b ) / 4 ,  b + ( B  - -  b ) / 2  and b + 3(B - b ) / 4 ,  along the 
fibre axis, z /a .  

1.8 o 

0~ 
e -  
03 

e -  

E 
r  

E 

E 
O 
z 

1.6 

1.4 

1.2 

1 

0.8 

0.6 

0.4 

0.2 

0 
0 

(b)  

i 

0.1 

I 

f i i j 

0.2 0.3 0.4 0.5 0.6 

Fibre volume fraction, Vf 

Figure 4 (a) Normalized maximum fibre axial stress, [cY~]ma~/ga, 
and (b) normalized maximum fibre-matrix interface shear stress, 
[xi(a, Z)]m,x/%, as a function of fibre volume fraction, for Young's 
moduli of matrix Em = 1.5, 3.0 and 6.0 GPa. 

effect of  E m becomes increasingly more  impor t an t  at  
a high Vf. In  the case o f lSS  (Fig. 4b), this is thought  to 
be associated with the reduced size of  the matr ix  
annulus sur rounding  the discontinuous,  isolated fibre 
when Vf is increased. At the same time, an increase in 
Vf effectively increases the relative size of  the average 
composi te  cylinder. F r o m  the functional viewpoints,  
the use of  a high Em is seen to have much  the same 
effect as an increase in Vf. This  is because bo th  the 
factors increase the stiffness of  the composi te  medium�9 
As the Young 's  modu lus  of the fibre used in the 
calculat ion is a l ready significantly greater  than  the 
matr ix,  the stiffening effect due to the use of  a matr ix  
mater ia l  with a high Young 's  modulus  is shown to be 
not  significant as that  due to the increase in Vf. 

3.2. Fibre fragmentation and interface 
debond 

The fibre f ragmenta t ion  criterion specified by Equa-  
t ion (32) is shown in Fig. 5, in which the mean  fibre 
f ragment  length, 2L, is p lot ted as a function of appl ied 
strain, ~, at  remote  ends. I t  is noted  that  2L declines 
ins tantaneously  within a na r row range of applied 
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Applied strain 

Figure 5 Variation of mean fibre fragment length, 2L, as a function 
of applied strain, c, for fibre volume fractions Vf = 0.005, 0.0], 0.1 
and 0.3. 

strain, for a low fibre Vf in particular.  The  precipi tous 
d rop  in 2L is followed by an a lmost  cons tant  value 
with further increase in the appl ied strain for all fibre 
Vf studied. A composi te  with high fibre content  cer- 
tainly requires a significantly higher applied strain to 
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Figure 6 Variation of critical transfer length, 2L~, as a function of 
Young's  modulus  ratio of the fibre to the matrix, Ef/Em, for fibre 
volume fractions Vf = 0.005, 0.01, 0.1 and 0.3. 
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Figure 7 Plot of interface shear bond strength, %, as a function of 
fibre length, 2L, calculated based on Equation 34 for varied fibre 
volume fractions Vf = 0.005, 0.01, 0.1 and 0.3. 

cause the fibres to break into given lengths. This result 
is considered consistent with the parabolic decrease in 
the maximum FAS with increase in fibre Vf shown in 
Fig. 4a. The dependence of critical transfer length, 
(2L)c on Young's modulus ratio, El~Era, is presented in 
Fig. 6. The critical transfer length is defined here as the 
fibre length necessary to build up a maximum stress 
equal to 90% of that for an infinitely long fibre [13]. 
For a low fibre Vf, (2L)c surges rapidly with the 
modulus ratio, Ef/Em, before its gradient becomes 
negligible at a high modulus ratio, whereas for a high 
fibre Vf, (2L)~ increases only marginally for the whole 
range of modulus ratio studied. At a given modulus 
ratio, (2L)c varies inversely with fibre Vf. 

Fig. 7 presents the critical combination of the inter- 
face shear bond strength, %, and the fibre fragment 
length, 2L, which satisfy the debond criterion at the 
fibre-matrix interface. The regions above and below 
the curves in Fig. 7 represent the fully bounded and 
partially debonded interfaces, respectively. Also en- 
visaged from this figure is that with an increase in fibre 
Vf at a given fibre length, the relative area for debon- 
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ded interface increases within the range of the vari- 
ables studied. This, in turn, means that the 
fibre matrix interfacial debonding becomes easier 
with increasing the fibre Vf. Finally, the interface deb- 
ond criterion is depicted in Fig. 8 in terms of the 
applied stress, CYaa, required for initial interfacial deb- 
onding according to Equation 35. The debond stress, 
~aa, varies linearly with the interface bond strength, 
%. A high fibre Vf is shown to require a marginally 
lower applied stress for debonding at a given inter- 
facial bond strength and fibre length, which agrees 
with the observation noted from Figs 3b and 7. 

4. Discussion 
In the light of the parametric study presented in the 
foregoing section, the implications of the present the- 
oretical analysis can be summarized with regard to the 
fibre fragmentation and interfacial debonding phe- 
nomena. The higher the fibre volume fraction, Vf, and 
the Young's modulus of the matrix, Era, the higher is 
the required external stress to allow the maximum 
FAS to reach the local fibre tensile strength. In other 
words, from the practical viewpoint of the fibre frag- 
mentation test, a higher applied strain is required to 
obtain the identical mean fibre fragment length, 2L, 
with increasing Vf, However, the same condition re- 
sults in a higher maximum fibre-matrix ISS. It seems 
that the concentration of ISS at the fibre ends is 
promoted by the boundary condition used in the the- 
oretical analysis that the cross-sectional ends are as- 
sumed unbonded. The result indicates that debond 
initiation becomes increasingly easier with increasing 
stiffness of the composite medium as a result of high 
fibre Vf and matrix Young's modulus, E m. It is ex- 
pected that once the interface debond crack initiates, 
its propagation requires a higher external stress be- 
cause of softening of the composite medium that the 
interracial debond may cause. 

Further implications can be made of the fore- 
going accounts with regard to the fracture modes of 
composites containing aligned discontinuous fibres 



embedded in a brittle matrix. When Vf and Em are low, 
the failure of the composite is likely to be caused by 
the damage process accumulated by the fibre fracture 
which is rather catastrophic without much debonding 
and/or delamination. For a composite with high Vf 
and E m the failure tends to be more stable and pro- 
gressive due to the large energy absorbed during inter- 
facial debond/delamination. Certainly, the occurrence 
of these two opposing fracture phenomena, the so- 
called transverse fracture versus longitudinal splitting, 
is strongly dependent on the relative magnitudes of 
characteristic strength properties of the composite 
constituents. The most important properties are iden- 
tified to be the tensile strength of the fibre, ~Ts, and 
the interfacial shear bond strength, %, as the criteria 
for fibre fracture and interface debonding derived in 
Section 2 suggest. Alternatively, the transition be- 
tween these fracture phenomena can be expressed by 
two characteristic fracture properties, namely the frac- 
ture toughness for transverse fracture, GT, and the 
fracture toughness of the fibre matrix (or laminar) 
interface, GL. Depending on the criteria and the as- 
sumptions used, the toughness ratio is reported 
GT/GI~ ~ 0.12 [14, 15] or 0.25 [16], for transition of 
fracture modes in a unidirectional continuous fibre 
composite. 

The discussion presented above is based on the 
assumptions made in the analysis that the Young's 
modulus of the composite medium, Eo, varies only 
with the Young's moduli and volume fractions of the 
composite constituents. However, it is envisaged that 
for practical composites containing discontinuous 
aligned fibres, damage developed during loading in 
the form of fibre fracture, matrix cracking and inter- 
facial debonding may degrade the composite mechan- 
ical properties. In particular, the interracial debonding 
would result in significant reduction in strengths un- 
der both longitudinal tension and compression, as 
well as in transverse tension. Nevertheless, it is ex- 
pected that the Young's modulus of a composite will 
remain almost unchanged even with interface debon- 
ding, as evinced in a recent report [17] on the roles of 
interracial adhesion on the mechanical properties of 
carbon fibre-epoxy matrix composites. Regarding the 
effects of fragmentation of the fibres in a composite 
medium, the composite longitudinal strength would 
gradually decreases with the shortening of fibre length, 
as for the average stress felt by the fibres. However, the 
Young's modulus of the composite is little influenced 
by the fibre length as long as its aspect ratio, L/a, is 
sufficiently large, say larger than about 100 [18], 
which is the case of the carbon fibre-epoxy matrix 
composites studied in the present paper. 

5. Conclusion 
The stress transfer in a multiple fibre composite, which 
was subjected to a uniaxial tension, was studied. 
Special emphasis was placed on the effects of interac- 
tions between reinforcing fibres for varying fibre vol- 
ume fraction and matrix Young's modulus. Solutions 
have been derived for the stress components in the 
three-cylinder composite model. Criteria for two 

opposing fracture phenomena, namely the fibre frag- 
mentation and fibre-matrix interface debonding, were 
also established for the loading geometry considered. 
A parametric study for a model composite of carbon 
fibre-epoxy matrix composite suggests that the fibre 
fragmentation becomes increasingly diffficult while the 
interracial debonding becomes easier with increasing 
stiffness of the average composite medium surround- 
ing the core single-fibre composite. This observation 
has an implication for aligned discontinuous fibre 
composites in that the stability and the energy absorp- 
tion capability of fracture process can be enhanced by 
increasing the fibre volume fraction and the matrix 
Young's modulus. 
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Appendix 1. 
Coefficients 

Q1 = I T 4 (  1+  

( TIT4 + 

( TIT4 + 

Non-dimensional 
O1, O2, O3, O4, O~ and 0.6 

$3)(b)2 ( $2S3~/ 
s--l.T2 + - - T i T s +  s~ J~  

$1S~3 T2) (A1) 

{(a)2 E s3 } Q 2 = - T 5  ~ 0 ~ - - + 1 + - -  + T 3 + ~ T 4  
si 7 

/ TiT4 + - -  Ta (A2) 

B 2 
Qa = ( ~ ) T s f [ Q 2 ( T t T 4 + S 3 T 2 ~ ]  (13) 

si / 3  

Q4= b 2132 T i T 4 + - - T 2  + 
S1 

X r 4 1 4 - -  - - - - r  3 4- T4 
7 JJ/LSi  

(A4) 

Q5 = Q3 a2[ ~ Ti -- + 1 4 . . . .  
7 si 

+ ( ! ) 2  T3]} [s~ + ( ! )2T4 ] (A5) 

[ Q6 = - Q 3  1 + - - - - 4 -  
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where 

sx = In 27 

(_b']2 in (_b" ] 1 
s2 = (AS) 

\ a /  \ a /  27 

( b ~ Z l n ( b  ~ 1 + 2 7  
S 3 = (A9) 

\ a /  \ a /  472 

= ( b ~ 4 1 n ( b ~  3 +  27 (A10) 
s4 \ a /  \ a /  472 

( B )  2 (Ba) 1 (All) 
ss = In 27~ 

s6 = ~ In 472 (A12) 

T1 = 7(1 + Vm) s2S3 - -  S IS4  (A13) 
s1 

T2 = "11(1 § Vc) $2S6 (A14) 
$1 

~7i(1 + v~)s6 
T3 - (A15) 

7(1 + Vm)S1 
2 

7(1 + Vm)Sl -- ~171(1 + re)s6 
T4 = (A16) 

0 q 7 7 1 ( 1  + Vm)S 1 

1 
T5 - (A17) 

7(1 -I- Vm)S 1 

Appendix 2. Correction of typographic er- 
rors in Part 1 of this paper [6]  
Equation 3 should read 

and Equation A10 should read 

~Ub,  z ) = ~ f ( z )  a 13~7 (13~77 + ~ -  
1 + 7  

(1317) 2 
(A10) 
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fl~ = (1 + v,.)[b41n(b/a) - (b 2 - a2)2/2 - (b 4 -a4)/4.]  

and equations 12 and 13 should read 
1 

- B1 + (B 2 + 42B~)g 
m l =  2 

1 
- B~ + (B 2 + 42B~)~ 

m2 = 2 

(3) 

(12) 

(13) 

Equation 36 should read 

a ~  2 I n  3 + V m n l ( ~  + 7)]C~Ts(2L) + ~ v f ( n  1 + ~)6" 
"C b < 

a n 3 c o t h  [ [32(L - 1)] - [n3  + V m n l ( ~  -[- 7 ) - ] c o s e c h [ [ 3 2 ( L  - / ) ]  
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